472 research outputs found

    Guest Artist Recital

    Get PDF

    Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride

    Full text link
    Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state quantum engineering. Analogously to three-dimensional wide-bandgap semiconductors like diamond, h-BN hosts isolated defects exhibiting visible fluorescence, and the ability to position such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications, however, is an understanding of the physics underlying h-BN's quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. The emitters are bright and stable over timescales of several months in ambient conditions. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects' optical emission, which offer several clues about their electronic and chemical structure. Analysis of the defects' spectra reveals similarities in vibronic coupling despite widely-varying fluorescence wavelengths, and a statistical analysis of their polarized emission patterns indicates a correlation between the optical dipole orientations of some defects and the primitive crystallographic axes of the single-crystal h-BN film. These measurements constrain possible defect models, and, moreover, suggest that several classes of emitters can exist simultaneously in free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations

    Spin-Dependent Quantum Emission in Hexagonal Boron Nitride at Room Temperature

    Get PDF
    Optically addressable spins associated with defects in wide-bandgap semiconductors are versatile platforms for quantum information processing and nanoscale sensing, where spin-dependent inter-system crossing (ISC) transitions facilitate optical spin initialization and readout. Recently, the van der Waals material hexagonal boron nitride (h-BN) has emerged as a robust host for quantum emitters (QEs), but spin-related effects have yet to be observed. Here, we report room-temperature observations of strongly anisotropic photoluminescence (PL) patterns as a function of applied magnetic field for select QEs in h-BN. Field-dependent variations in the steady-state PL and photon emission statistics are consistent with an electronic model featuring a spin-dependent ISC between triplet and singlet manifolds, indicating that optically-addressable spin defects are present in h-BN - a versatile two-dimensional material promising efficient photon extraction, atom-scale engineering, and the realization of spin-based quantum technologies using van der Waals heterostructures.Comment: 38 pages, 34 figure

    40Ar/39Ar systematics of melt lithologies and target rocks from the Gow Lake impact structure, Canada

    Get PDF
    The age of the Gow Lake impact structure (Saskatchewan, Canada) is poorly constrained, with previous estimates ranging from 100 to 250 Ma. Using a combination of step-heating and UV laser in situ 40Ar/39Ar analyses we have sought to understand the 40Ar/39Ar systematics of this small impact crater and obtain a more precise and accurate age. This structure is challenging for 40Ar/39Ar geochronology due to its small size (∼5 km diameter), the silicic composition of the target rock, and the large difference in age between the impact event and the target rock (∼1.2 Ga). These factors can serve to inhibit argon mobility in impact melts, leading to retention of ‘extraneous’ 40Ar and anomalously older measured ages. We mitigated the undesirable effects of extraneous 40Ar retention by analysing small volume aliquots of impact glass using step-heating and even smaller volumes via the UV laser in situ 40Ar/39Ar technique. Although primary hydration of impact-generated glasses enhanced the diffusivity of 40Ar inherited from silica-rich melts, data still had to be corrected for extraneous 40Ar by using isotope correlation plots to define the initial trapped 40Ar/36Ar components. Our inverse isochron age of 196.8 ± 9.6/9.9 Ma (2σ, analytical/external precision) demonstrates that the Gow Lake event occurred within uncertainty of the Triassic-Jurassic boundary, but there is no evidence that it was part of an impact cluster

    Gastro-Oesophageal Reflux in Noncystic Fibrosis Bronchiectasis

    Get PDF
    The clinical presentation of noncystic fibrosis bronchiectasis may be complicated by concomitant conditions, including gastro-oesophageal reflux (GOR). Increased acidic GOR is principally caused by gastro-oesophageal junction incompetence and may arise from lower oesophageal sphincter hypotension, including transient relaxations, hiatus hernia, and oesophageal dysmotility. Specific pathophysiological features which are characteristic of respiratory diseases including coughing may further increase the risk of GOR in bronchiectasis. Reflux may impact on lung disease severity by two mechanisms, reflex bronchoconstriction and pulmonary microaspiration. Symptomatic and clinically silent reflux has been detected in bronchiectasis, with the prevalence of 26 to 75%. The cause and effect relationship has not been established, but preliminary reports suggest that GOR may influence the severity of bronchiectasis. Further studies examining the implications of GOR in this condition, including its effect across the disease spectrum using a combination of diagnostic tools, will clarify the clinical significance of this comorbidity
    corecore